Skip to content

Hash

Table of Contents

1. Two Sum

"""
- Return the indices of the two numbers such that they add up to a specific target.
- Approach: Use a hashmap to store the indices of the numbers.
- Time Complexity: O(n)
- Space Complexity: O(n)
"""

from typing import List


def two_sum(nums: List[int], target: int) -> List[int]:
    hashmap = {}  # val: idx

    for idx, val in enumerate(nums):
        if (target - val) in hashmap:
            return [hashmap[target - val], idx]

        hashmap[val] = idx

    return []


def test_two_sum():
    assert two_sum([2, 7, 11, 15], 9) == [0, 1]
    assert two_sum([3, 2, 4], 6) == [1, 2]
    assert two_sum([3, 3], 6) == [0, 1]
    assert two_sum([1, 2, 3, 4, 5], 10) == []
    assert two_sum([-1, -2, -3, -4, -5], -8) == [2, 4]
#include <cassert>
#include <unordered_map>
#include <vector>

using namespace std;

class Solution {
   public:
    vector<int> twoSum(vector<int>& nums, int target) {
        unordered_map<int, int> map;

        for (size_t i = 0; i < nums.size(); i++) {
            int diff = target - nums[i];
            if (map.find(diff) != map.end()) {
                return {map[diff], (int)i};
            }
            map[nums[i]] = (int)i;
        }
        return {-1, -1};
    }
};

int main() {
    Solution solution;
    vector<int> nums = {2, 7, 11, 15};
    int target = 9;
    vector<int> result = solution.twoSum(nums, target);
    assert((result == vector<int>{0, 1}));
    return 0;
}

49. Group Anagrams

from collections import defaultdict
from typing import List


# Hash - List
def groupAnagrams(strs: List[str]) -> List[List[str]]:
    result = defaultdict(list)

    for s in strs:
        count = [0] * 26
        for i in s:
            count[ord(i) - ord("a")] += 1

        result[tuple(count)].append(s)

    return list(result.values())


# |-------------|-----------------|--------------|
# |  Approach   |      Time       |    Space     |
# |-------------|-----------------|--------------|
# |    Hash     |     O(n * k)    |     O(n)     |
# |-------------|-----------------|--------------|


strs = ["eat", "tea", "tan", "ate", "nat", "bat"]
print(groupAnagrams(strs))
# [['eat', 'tea', 'ate'], ['tan', 'nat'], ['bat']]

128. Longest Consecutive Sequence

from typing import List


# Set
def longestConsecutiveSet(nums: List[int]) -> int:
    num_set = set(nums)  # O(n)
    longest = 0

    for n in nums:
        if (n - 1) not in num_set:  # left boundary
            length = 1

            while (n + length) in num_set:
                length += 1

            longest = max(longest, length)

    return longest


# Union Find
def longestConsecutiveUF(nums: List[int]) -> int:
    if not nums:
        return 0

    par = {num: num for num in nums}
    rank = {num: 1 for num in nums}

    def find(num):
        p = par[num]
        while p != par[p]:
            p = par[p]
        return p

    def union(num1, num2):
        p1, p2 = find(num1), find(num2)
        if p1 == p2:
            return

        if rank[p1] < rank[p2]:
            par[p1] = p2
            rank[p2] += rank[p1]
        else:
            par[p2] = p1
            rank[p1] += rank[p2]

    for num in nums:
        if num - 1 in par:
            union(num, num - 1)

    return max(rank.values())


# |------------|------- |---------|
# |  Approach  |  Time  |  Space  |
# |------------|--------|---------|
# |  Set       |  O(N)  |  O(N)   |
# | Union Find |  O(N)  |  O(N)   |
# |------------|--------|---------|


nums = [100, 4, 200, 1, 3, 2]
print(longestConsecutiveSet(nums))  # 4
print(longestConsecutiveUF(nums))  # 4

Comments