Skip to content

Binary Tree

Table of Contents

94. Binary Tree Inorder Traversal

  • LeetCode | 力扣

  • Tags: Stack, Tree, Depth First Search, Binary Tree

from typing import List, Optional

from binarytree import Node as TreeNode
from binarytree import build


# Recursive
def inorderTraversalRecursive(root: TreeNode) -> List[int]:
    res = []

    def dfs(node):
        if not node:
            return

        dfs(node.left)
        res.append(node.val)  # <--
        dfs(node.right)

    dfs(root)

    return res


# Iterative
def inorderTraversalIterative(root: Optional[TreeNode]) -> List[int]:
    if not root:
        return []

    stack = []
    res = []
    cur = root

    while cur or stack:
        if cur:
            stack.append(cur)
            cur = cur.left
        else:
            cur = stack.pop()
            res.append(cur.val)
            cur = cur.right

    return res


tree = build([0, 1, 2, 3, 4, 5, 6])
print(tree)
#     __0__
#    /     \
#   1       2
#  / \     / \
# 3   4   5   6
print(inorderTraversalRecursive(tree))  # [3, 1, 4, 0, 5, 2, 6]
print(inorderTraversalIterative(tree))  # [3, 1, 4, 0, 5, 2, 6]

104. Maximum Depth of Binary Tree

  • LeetCode | 力扣

  • Tags: Tree, Depth First Search, Breadth First Search, Binary Tree

from collections import deque
from typing import Optional

from binarytree import Node as TreeNode
from binarytree import build


# Recursive
def maxDepthRecursive(root: Optional[TreeNode]) -> int:
    if not root:
        return 0

    left = maxDepthRecursive(root.left)
    right = maxDepthRecursive(root.right)

    return 1 + max(left, right)


# DFS
def maxDepthDFS(root: Optional[TreeNode]) -> int:
    res = 0

    def dfs(node, cnt):
        if node is None:
            return
        cnt += 1
        nonlocal res
        res = max(res, cnt)

        dfs(node.left, cnt)
        dfs(node.right, cnt)

    dfs(root, 0)

    return res


# Iterative
def maxDepthIterative(root: Optional[TreeNode]) -> int:
    if not root:
        return 0

    q = deque([root])
    res = 0

    while q:
        res += 1
        n = len(q)

        for _ in range(n):
            node = q.popleft()
            if node.left:
                q.append(node.left)
            if node.right:
                q.append(node.right)

    return res


if __name__ == "__main__":
    root = [1, 2, 2, 3, 4, None, None, None, None, 5]
    root = build(root)
    print(root)
    #     ____1
    #    /     \
    #   2__     2
    #  /   \
    # 3     4
    #      /
    #     5
    assert maxDepthRecursive(root) == 4
    assert maxDepthDFS(root) == 4
    assert maxDepthIterative(root) == 4

226. Invert Binary Tree

  • LeetCode | 力扣

  • Tags: Tree, Depth First Search, Breadth First Search, Binary Tree

from typing import Optional

from binarytree import build


class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right


# Recursive
def invertTreeRecursive(root: Optional[TreeNode]) -> Optional[TreeNode]:
    if not root:
        return root

    root.left, root.right = root.right, root.left

    invertTreeRecursive(root.left)
    invertTreeRecursive(root.right)

    return root


# Iterative
def invertTreeIterative(root: Optional[TreeNode]) -> Optional[TreeNode]:
    if not root:
        return root

    stack = [root]

    while stack:
        node = stack.pop()

        node.left, node.right = node.right, node.left
        if node.left:
            stack.append(node.left)
        if node.right:
            stack.append(node.right)

    return root


root = build([4, 2, 7, 1, 3, 6, 9])
print(root)
#     __4__
#    /     \
#   2       7
#  / \     / \
# 1   3   6   9
invertedRecursive = invertTreeRecursive(root)
print(invertedRecursive)
#     __4__
#    /     \
#   7       2
#  / \     / \
# 9   6   3   1
root = build([4, 2, 7, 1, 3, 6, 9])
invertedIterative = invertTreeIterative(root)
print(invertedIterative)
#     __4__
#    /     \
#   7       2
#  / \     / \
# 9   6   3   1

101. Symmetric Tree

  • LeetCode | 力扣

  • Tags: Tree, Depth First Search, Breadth First Search, Binary Tree

from collections import deque
from typing import Optional

from binarytree import Node as TreeNode
from binarytree import build


# Recursive
def is_symmetric_recursive(root: Optional[TreeNode]) -> bool:
    if not root:
        return True

    def check(left, right):
        if left is right:
            return True
        if not left or not right or left.val != right.val:
            return False
        outside = check(left.left, right.right)
        inside = check(left.right, right.left)
        return outside and inside

    return check(root.left, root.right)


# Iterative
def is_symmetric_iterative(root: Optional[TreeNode]) -> bool:
    if not root:
        return True

    q = deque()
    q.append(root.left)
    q.append(root.right)

    while q:
        left = q.popleft()
        right = q.popleft()

        if not left and not right:
            continue

        if not left or not right or left.val != right.val:
            return False

        q.append(left.left)
        q.append(right.right)
        q.append(left.right)
        q.append(right.left)

    return True


if __name__ == "__main__":
    root = [1, 2, 2, 3, 4, 4, 3]
    root = build(root)
    print(root)
    #     __1__
    #    /     \
    #   2       2
    #  / \     / \
    # 3   4   4   3
    assert is_symmetric_recursive(root) is True
    assert is_symmetric_iterative(root) is True

543. Diameter of Binary Tree

from typing import Optional

from binarytree import Node as TreeNode
from binarytree import build


# Tree DFS
class Solution:
    def diameterOfBinaryTree(self, root: Optional[TreeNode]) -> int:
        self.diameter = 0

        def dfs(node):
            if not node:
                return 0
            left = dfs(node.left)
            right = dfs(node.right)

            self.diameter = max(self.diameter, left + right)

            return 1 + max(left, right)

        dfs(root)

        return self.diameter


root = build([1, 2, 3, 4, 5])
print(root)
#     __1
#    /   \
#   2     3
#  / \
# 4   5
obj = Solution()
print(obj.diameterOfBinaryTree(root))  # 3
#include <algorithm>
#include <iostream>
using namespace std;

struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode* left, TreeNode* right)
        : val(x), left(left), right(right) {}
};

int diameterOfBinaryTree(TreeNode* root) {
    int diameter = 0;

    auto dfs = [&](auto&& self, TreeNode* node) -> int {
        if (!node) return 0;
        int left = self(self, node->left);
        int right = self(self, node->right);

        diameter = max(diameter, left + right);

        return 1 + max(left, right);
    };

    dfs(dfs, root);
    return diameter;
}

int main() {
    // [1, 2, 3, 4, 5]
    TreeNode* root = new TreeNode(1);
    root->left = new TreeNode(2);
    root->right = new TreeNode(3);
    root->left->left = new TreeNode(4);
    root->left->right = new TreeNode(5);
    cout << diameterOfBinaryTree(root) << endl;  // 3

    return 0;
}

102. Binary Tree Level Order Traversal

from collections import deque
from typing import List, Optional

from binarytree import Node as TreeNode
from binarytree import build


def levelOrder(root: Optional[TreeNode]) -> List[List[int]]:
    if not root:
        return []

    q = deque([root])
    res = []

    while q:
        level = []
        size = len(q)

        for _ in range(size):
            cur = q.popleft()
            level.append(cur.val)

            if cur.left:
                q.append(cur.left)
            if cur.right:
                q.append(cur.right)

        res.append(level)

    return res


tree = build([3, 9, 20, None, None, 15, 7])
print(tree)
#   3___
#  /    \
# 9     _20
#      /   \
#     15    7
print(levelOrder(tree))  # [[3], [9, 20], [15, 7]]

108. Convert Sorted Array to Binary Search Tree

  • LeetCode | 力扣

  • Tags: Array, Divide And Conquer, Tree, Binary Search Tree, Binary Tree

from typing import List, Optional


class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right


def sortedArrayToBST(nums: List[int]) -> Optional[TreeNode]:
    if len(nums) == 0:
        return None

    mid = len(nums) // 2
    root = TreeNode(nums[mid])

    root.left = sortedArrayToBST(nums[:mid])
    root.right = sortedArrayToBST(nums[mid + 1 :])

    return root


nums = [-10, -3, 0, 5, 9]
root = sortedArrayToBST(nums)
#      0
#     / \
#   -3   9
#   /   /
# -10  5
#include <vector>
using namespace std;

struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode* left, TreeNode* right)
        : val(x), left(left), right(right) {}
};

class Solution {
   public:
    TreeNode* sortedArrayToBST(vector<int>& nums) {
        if (nums.size() == 0) return nullptr;

        int mid = nums.size() / 2;
        TreeNode* root = new TreeNode(nums[mid]);

        vector<int> left(nums.begin(), nums.begin() + mid);
        vector<int> right(nums.begin() + mid + 1, nums.end());

        root->left = sortedArrayToBST(left);
        root->right = sortedArrayToBST(right);

        return root;
    }
};

int main() { return 0; }

98. Validate Binary Search Tree

  • LeetCode | 力扣

  • Tags: Tree, Depth First Search, Binary Search Tree, Binary Tree

from itertools import pairwise
from math import inf
from typing import Optional

from binarytree import Node as TreeNode
from binarytree import build


def isValidBST1(root: Optional[TreeNode]) -> bool:
    inorder = []  # inorder traversal

    def dfs(node):
        if not node:
            return None
        dfs(node.left)
        inorder.append(node.val)
        dfs(node.right)

    dfs(root)

    for a, b in pairwise(inorder):
        if a >= b:
            return False

    return True


def isValidBST2(root: Optional[TreeNode]) -> bool:
    if not root:
        return True
    pre = -inf

    def dfs(node):
        if not node:
            return True
        if not dfs(node.left):
            return False

        nonlocal pre
        if node.val <= pre:
            return False
        pre = node.val

        return dfs(node.right)

    return dfs(root)


if __name__ == "__main__":
    root = [5, 1, 4, None, None, 3, 6]
    root = build(root)
    print(root)
    #   5__
    #  /   \
    # 1     4
    #      / \
    #     3   6
    assert not isValidBST1(root)  # [1, 5, 3, 4, 6]
    assert not isValidBST2(root)  # [1, 5, 3, 4, 6]
#include <cassert>
#include <vector>
using namespace std;

struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode *left, TreeNode *right)
        : val(x), left(left), right(right) {}
};

class Solution {
   private:
    vector<int> inorder;
    bool check(vector<int> inorder) {
        int n = inorder.size();
        if (n <= 1) return true;
        for (int i = 1; i < n; i++) {
            if (inorder[i] <= inorder[i - 1]) return false;
        }
        return true;
    }

   public:
    bool isValidBST(TreeNode *root) {
        auto dfs = [&](auto &&self, TreeNode *node) -> void {
            if (!node) return;

            self(self, node->left);
            inorder.push_back(node->val);
            self(self, node->right);
        };

        dfs(dfs, root);

        return check(inorder);
    }
};

int main() {
    Solution s;
    TreeNode *root = new TreeNode(2);
    root->left = new TreeNode(1);
    root->right = new TreeNode(3);
    assert(s.isValidBST(root) == true);

    root = new TreeNode(5);
    root->left = new TreeNode(1);
    root->right = new TreeNode(4);
    root->right->left = new TreeNode(3);
    root->right->right = new TreeNode(6);
    assert(s.isValidBST(root) == false);

    root = new TreeNode(5);
    root->left = new TreeNode(4);
    root->right = new TreeNode(6);
    root->right->left = new TreeNode(3);
    root->right->right = new TreeNode(7);
    assert(s.isValidBST(root) == false);

    return 0;
}

230. Kth Smallest Element in a BST

  • LeetCode | 力扣

  • Tags: Tree, Depth First Search, Binary Search Tree, Binary Tree

from typing import Optional

from binarytree import Node as TreeNode
from binarytree import build


# Recursive
def kthSmallestRecursive(root: Optional[TreeNode], k: int) -> int:
    inorder = []

    def dfs(node):
        if not node:
            return None
        dfs(node.left)
        inorder.append(node.val)
        dfs(node.right)

    dfs(root)
    return inorder[k - 1]


# Iteratve
def kthSmallestIteratve(root: Optional[TreeNode], k: int) -> int:
    stack = []
    while True:
        while root:
            stack.append(root)
            root = root.left
        root = stack.pop()
        k -= 1
        if not k:
            return root.val
        root = root.right


if __name__ == "__main__":
    root = build([3, 1, 4, None, 2])
    k = 1
    assert kthSmallestRecursive(root, k) == 1
    assert kthSmallestIteratve(root, k) == 1

199. Binary Tree Right Side View

  • LeetCode | 力扣

  • Tags: Tree, Depth First Search, Breadth First Search, Binary Tree

from collections import deque
from typing import List, Optional

from binarytree import Node as TreeNode
from binarytree import build


# Binary Tree BFS
def rightSideViewBFS(root: Optional[TreeNode]) -> List[int]:
    if not root:
        return []

    q = deque([root])
    res = []

    while q:
        n = len(q)
        for i in range(n):
            node = q.popleft()
            if i == n - 1:
                res.append(node.val)
            if node.left:
                q.append(node.left)
            if node.right:
                q.append(node.right)

    return res


# Binary Tree DFS
def rightSideViewDFS(root: Optional[TreeNode]) -> List[int]:
    """后序遍历,先右后左,遇到的第一个节点就是该深度的最右侧节点"""
    ans = []

    def dfs(node, depth):
        if node is None:
            return
        if depth == len(ans):  # 这个深度首次遇到
            ans.append(node.val)

        dfs(node.right, depth + 1)
        dfs(node.left, depth + 1)

    dfs(root, 0)

    return ans


if __name__ == "__main__":
    root = [1, 2, 2, 3, 4, None, 3, None, None, 5]
    root = build(root)
    print(root)
    #     ____1
    #    /     \
    #   2__     2
    #  /   \     \
    # 3     4     3
    #      /
    #     5
    assert rightSideViewBFS(root) == [1, 2, 3, 5]
    assert rightSideViewDFS(root) == [1, 2, 3, 5]

114. Flatten Binary Tree to Linked List

  • LeetCode | 力扣

  • Tags: Linked List, Stack, Tree, Depth First Search, Binary Tree

#include <cassert>
#include <vector>

struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode* left, TreeNode* right)
        : val(x), left(left), right(right) {}
};

class Solution {
   public:
    void flatten(TreeNode* root) {
        if (!root) return;

        flatten(root->left);
        flatten(root->right);

        TreeNode* left = root->left;
        TreeNode* right = root->right;

        root->left = nullptr;
        root->right = left;

        TreeNode* curr = root;
        while (curr->right) curr = curr->right;
        curr->right = right;
    }
};

int main() {
    Solution sol;
    TreeNode* root =
        new TreeNode(1, new TreeNode(2, new TreeNode(3), new TreeNode(4)),
                     new TreeNode(5, nullptr, new TreeNode(6)));
    sol.flatten(root);

    TreeNode* cur = root;
    std::vector<int> expected = {1, 2, 3, 4, 5, 6};
    for (int val : expected) {
        assert(cur != nullptr && cur->val == val);
        cur = cur->right;
    }
    assert(cur == nullptr);  // End of list

    return 0;
}

105. Construct Binary Tree from Preorder and Inorder Traversal

  • LeetCode | 力扣

  • Tags: Array, Hash Table, Divide And Conquer, Tree, Binary Tree

from typing import List, Optional

from helper import TreeNode


def buildTree(preorder: List[int], inorder: List[int]) -> Optional[TreeNode]:
    """
    preorder  root left right  1  2  3
    inorder   left root right  4  5  6
    """
    if len(preorder) == 0:
        return None

    root_val = preorder[0]  # 1
    root = TreeNode(root_val)

    separator_idx = inorder.index(root_val)  # 5

    left_inorder = inorder[:separator_idx]  # 4
    right_inorder = inorder[separator_idx + 1 :]  # 6

    left_preorder = preorder[1 : 1 + len(left_inorder)]  # 2
    right_preorder = preorder[1 + len(left_inorder) :]  # 3

    root.left = buildTree(left_preorder, left_inorder)
    root.right = buildTree(right_preorder, right_inorder)

    return root


preorder = [3, 9, 20, 15, 7]
inorder = [9, 3, 15, 20, 7]
root = buildTree(preorder, inorder)
print(root)
#     3
#    / \
#   9  20
#     /  \
#    15   7
#include <iostream>
#include <unordered_map>
#include <vector>
using namespace std;

struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode* left, TreeNode* right)
        : val(x), left(left), right(right) {}
};

class Solution {
   public:
    vector<int> preorder;
    unordered_map<int, int> inorderMap;

    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        this->preorder = preorder;
        for (size_t i = 0; i < inorder.size(); i++) {
            inorderMap[inorder[i]] = i;
        }
        return buildSubtree(0, 0, inorder.size() - 1);
    }

   private:
    TreeNode* buildSubtree(int rootIndex, int left, int right) {
        if (left > right) return nullptr;

        TreeNode* root = new TreeNode(preorder[rootIndex]);
        int inorderIndex = inorderMap[preorder[rootIndex]];

        root->left = buildSubtree(rootIndex + 1, left, inorderIndex - 1);
        root->right = buildSubtree(rootIndex + (inorderIndex - left + 1),
                                   inorderIndex + 1, right);

        return root;
    }
};

int main() {
    vector<int> preorder = {3, 9, 20, 15, 7};
    vector<int> inorder = {9, 3, 15, 20, 7};
    Solution solution;
    TreeNode* root = solution.buildTree(preorder, inorder);
    cout << root->val << endl;                // 3
    cout << root->left->val << endl;          // 9
    cout << root->right->val << endl;         // 20
    cout << root->right->left->val << endl;   // 15
    cout << root->right->right->val << endl;  // 7
    return 0;
}

437. Path Sum III

#include <iostream>
#include <unordered_map>
#include <vector>
using namespace std;

struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode *left, TreeNode *right)
        : val(x), left(left), right(right) {}
};

class Solution {
   public:
    int pathSum(TreeNode *root, int targetSum) {
        int res = 0;
        unordered_map<long long, int> cnt{{0, 1}};

        auto dfs = [&](auto &&self, TreeNode *node, long long cur) {
            if (!node) return;
            cur += node->val;

            if (cnt.find(cur - targetSum) != cnt.end())
                res += cnt[cur - targetSum];

            cnt[cur]++;
            self(self, node->left, cur);
            self(self, node->right, cur);
            cnt[cur]--;
        };

        dfs(dfs, root, 0);
        return res;
    }
};

int main() {
    Solution s;
    {
        TreeNode *root = new TreeNode(10);
        root->left = new TreeNode(5);
        root->right = new TreeNode(-3);
        root->left->left = new TreeNode(3);
        root->left->right = new TreeNode(2);
        root->right->right = new TreeNode(11);
        root->left->left->left = new TreeNode(3);
        root->left->left->right = new TreeNode(-2);
        root->left->right->right = new TreeNode(1);
        cout << s.pathSum(root, 8) << endl;  // 3
    }
    {
        TreeNode *root = new TreeNode(5);
        root->left = new TreeNode(4);
        root->right = new TreeNode(8);
        root->left->left = new TreeNode(11);
        root->right->left = new TreeNode(13);
        root->right->right = new TreeNode(4);
        root->left->left->left = new TreeNode(7);
        root->left->left->right = new TreeNode(2);
        root->right->right->left = new TreeNode(5);
        root->right->right->right = new TreeNode(1);
        cout << s.pathSum(root, 22) << endl;  // 3
    }
    return 0;
}

236. Lowest Common Ancestor of a Binary Tree

from typing import List, Optional

from binarytree import build


class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right


def lowestCommonAncestor(
    root: "TreeNode", p: "TreeNode", q: "TreeNode"
) -> "TreeNode":
    if not root or q == root or p == root:
        return root

    left = lowestCommonAncestor(root.left, p, q)
    right = lowestCommonAncestor(root.right, p, q)

    if left and right:
        return root

    return left or right


root = build([3, 5, 1, 6, 2, 0, 8, None, None, 7, 4])
print(root)
#     ______3__
#    /         \
#   5__         1
#  /   \       / \
# 6     2     0   8
#      / \
#     7   4
p = root.left  # 5
q = root.right  # 1
print(lowestCommonAncestor(root, p, q))  # 3
#     ______3__
#    /         \
#   5__         1
#  /   \       / \
# 6     2     0   8
#      / \
#     7   4
r = root.left.right.right  # 4
print(lowestCommonAncestor(root, p, r))  # 5
#   5__
#  /   \
# 6     2
#      / \
#     7   4
#include <iostream>
#include <unordered_map>
#include <vector>
using namespace std;

struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode* left, TreeNode* right)
        : val(x), left(left), right(right) {}
};

class Solution {
   public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        if (root == nullptr || root == p || root == q) {
            return root;
        }

        TreeNode* left = lowestCommonAncestor(root->left, p, q);
        TreeNode* right = lowestCommonAncestor(root->right, p, q);

        if (left && right) {
            return root;
        }

        return left ? left : right;
    }
};

int main() { return 0; }

124. Binary Tree Maximum Path Sum

  • LeetCode | 力扣

  • Tags: Dynamic Programming, Tree, Depth First Search, Binary Tree

from typing import Optional

from binarytree import Node as TreeNode
from binarytree import build


def maxPathSum(root: Optional[TreeNode]) -> int:
    res = float("-inf")

    def dfs(node):
        if not node:
            return 0

        leftMax = max(dfs(node.left), 0)
        rightMax = max(dfs(node.right), 0)

        cur = node.val + leftMax + rightMax
        nonlocal res
        res = max(res, cur)

        return node.val + max(leftMax, rightMax)

    dfs(root)

    return res


root = build([-10, 9, 20, None, None, 15, 7])
print(root)
#   -10___
#  /      \
# 9       _20
#        /   \
#       15    7
print(maxPathSum(root))  # 42

Comments