Tree Feature¶
Table of Contents¶
- 101. Symmetric Tree (Easy)
- 222. Count Complete Tree Nodes (Easy)
- 110. Balanced Binary Tree (Easy)
- 257. Binary Tree Paths (Easy)
- 404. Sum of Left Leaves (Easy)
- 112. Path Sum (Easy)
- 2331. Evaluate Boolean Binary Tree (Easy)
- 100. Same Tree (Easy)
- 235. Lowest Common Ancestor of a Binary Search Tree (Medium)
- 236. Lowest Common Ancestor of a Binary Tree (Medium)
101. Symmetric Tree¶
from collections import deque
from typing import Optional
from binarytree import Node as TreeNode
from binarytree import build
# Recursive
def is_symmetric_recursive(root: Optional[TreeNode]) -> bool:
if not root:
return True
def check(left, right):
if left is right:
return True
if not left or not right or left.val != right.val:
return False
outside = check(left.left, right.right)
inside = check(left.right, right.left)
return outside and inside
return check(root.left, root.right)
# Iterative
def is_symmetric_iterative(root: Optional[TreeNode]) -> bool:
if not root:
return True
q = deque()
q.append(root.left)
q.append(root.right)
while q:
left = q.popleft()
right = q.popleft()
if not left and not right:
continue
if not left or not right or left.val != right.val:
return False
q.append(left.left)
q.append(right.right)
q.append(left.right)
q.append(right.left)
return True
if __name__ == "__main__":
root = [1, 2, 2, 3, 4, 4, 3]
root = build(root)
print(root)
# __1__
# / \
# 2 2
# / \ / \
# 3 4 4 3
assert is_symmetric_recursive(root) is True
assert is_symmetric_iterative(root) is True
222. Count Complete Tree Nodes¶
from collections import deque
from typing import Optional
from binarytree import Node as TreeNode
from binarytree import build
# Recursive
def countNodesRecursive(root: Optional[TreeNode]) -> int:
if not root:
return 0
num = 1 + countNodesRecursive(root.left) + countNodesRecursive(root.right)
return num
# Iterative
def countNodesIterative(root: Optional[TreeNode]) -> int:
if not root:
return 0
q = deque([root])
count = 0
while q:
n = len(q)
for _ in range(n):
node = q.popleft()
count += 1
if node.left:
q.append(node.left)
if node.right:
q.append(node.right)
return count
# |------------|------- |---------|
# | Approach | Time | Space |
# |------------|--------|---------|
# | Recursive | O(n) | O(n) |
# | Iterative | O(n) | O(n) |
# |------------|--------|---------|
root = [1, 2, 3, 4, 5, 6]
root = build(root)
print(root)
# __1__
# / \
# 2 3
# / \ /
# 4 5 6
print(countNodesRecursive(root)) # 6
print(countNodesIterative(root)) # 6
110. Balanced Binary Tree¶
from typing import Optional
from binarytree import build
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
# Recursive
def isBalanced(root: Optional[TreeNode]) -> bool:
def getHeight(node):
if not node:
return 0
# post order
leftHeight = getHeight(node.left)
rightHeight = getHeight(node.right)
if leftHeight == -1 or rightHeight == -1:
return -1
if abs(leftHeight - rightHeight) > 1:
return -1
else:
return 1 + max(leftHeight, rightHeight)
if getHeight(root) != -1:
return True
else:
return False
root = [3, 9, 20, None, None, 15, 7]
root = build(root)
print(root)
# 3___
# / \
# 9 _20
# / \
# 15 7
print(isBalanced(root)) # True
257. Binary Tree Paths¶
from typing import List, Optional
from binarytree import Node as TreeNode
from binarytree import build
# Recursive
def binaryTreePaths(root: Optional[TreeNode]) -> List[str]:
res = []
def dfs(node, path):
if not node:
return
path += str(node.val)
if not node.left and not node.right:
res.append(path)
return
path += "->"
dfs(node.left, path)
dfs(node.right, path)
dfs(root, "")
return res
root = build([1, 2, 3, None, 5])
print(root)
# __1
# / \
# 2 3
# \
# 5
print(binaryTreePaths(root)) # ['1->2->5', '1->3']
404. Sum of Left Leaves¶
from typing import Optional
from binarytree import build
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
# Iterative
def sumOfLeftLeaves(root: Optional[TreeNode]) -> int:
if not root:
return 0
stack = [root]
sumLL = 0
while stack:
node = stack.pop()
if node.left and not node.left.left and not node.left.right:
sumLL += node.left.val
if node.right:
stack.append(node.right)
if node.left:
stack.append(node.left)
return sumLL
# Left Leave None:
# - node.left is not None
# - node.left.left is None
# - node.left.right is None
root = build([3, 9, 20, None, None, 15, 7])
print(root)
# 3___
# / \
# 9 _20
# / \
# 15 7
print(sumOfLeftLeaves(root)) # 24
112. Path Sum¶
from typing import Optional
from binarytree import build
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
# Recursive
def hasPathSum(root: Optional[TreeNode], targetSum: int) -> bool:
if not root:
return False
if not root.left and not root.right:
return root.val == targetSum
targetSum -= root.val
return hasPathSum(root.left, targetSum) or hasPathSum(
root.right, targetSum
)
root = build([5, 4, 8, 11, None, 13, 4, 7, 2, None, None, None, None, None, 1])
print(root)
# 5___
# / \
# ___4 _8
# / / \
# 11 13 4
# / \ \
# 7 2 1
print(hasPathSum(root, 22)) # True
2331. Evaluate Boolean Binary Tree¶
from typing import Optional
from binarytree import build
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
# Recursive
def evaluateTree(root: Optional[TreeNode]) -> bool:
if not root.left and not root.right:
return root.val
left = evaluateTree(root.left)
right = evaluateTree(root.right)
if root.val == 2:
return left or right
elif root.val == 3:
return left and right
root = build([2, 1, 3, None, None, 0, 1])
print(root)
# 2__
# / \
# 1 3
# / \
# 0 1
boolTree = build(["OR", "True", "AND", None, None, "False", "True"])
print(boolTree)
# __OR_______
# / \
# True __AND_
# / \
# False True
print(evaluateTree(root)) # 1
100. Same Tree¶
from collections import deque
from typing import Optional
from binarytree import Node as TreeNode
from binarytree import build
# 1. Recursive
def isSameTreeRecursive(p: Optional[TreeNode], q: Optional[TreeNode]) -> bool:
if not p and not q:
return True
elif not p or not q:
return False
elif p.val != q.val:
return False
return isSameTreeRecursive(p.left, q.left) and isSameTreeRecursive(
p.right, q.right
)
# 2. Iterative with queue
def isSameTreeIterativeQueue(
p: Optional[TreeNode], q: Optional[TreeNode]
) -> bool:
queue = deque([(p, q)])
while queue:
p, q = queue.popleft()
if not p and not q:
continue
if not p or not q:
return False
if p.val != q.val:
return False
queue.append((p.left, q.left))
queue.append((p.right, q.right))
return True
# 3. Iterative with stack
def isSameTreeIterativeStack(
p: Optional[TreeNode], q: Optional[TreeNode]
) -> bool:
stack = [(p, q)]
while stack:
n1, n2 = stack.pop()
if not n1 and not n2:
continue
if not n1 or not n2:
return False
if n1.val != n2.val:
return False
stack.append((n1.left, n2.left))
stack.append((n1.right, n2.right))
return True
if __name__ == "__main__":
p1 = build([1, 2, 3])
q1 = build([1, 2, 3])
p2 = build([1, 2])
q2 = build([1, None, 2])
assert isSameTreeRecursive(p1, q1) is True
assert isSameTreeRecursive(p2, q2) is False
assert isSameTreeIterativeQueue(p1, q1) is True
assert isSameTreeIterativeQueue(p2, q2) is False
assert isSameTreeIterativeStack(p1, q1) is True
assert isSameTreeIterativeStack(p2, q2) is False
235. Lowest Common Ancestor of a Binary Search Tree¶
from binarytree import build
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
def lowestCommonAncestor(
root: "TreeNode", p: "TreeNode", q: "TreeNode"
) -> "TreeNode":
while root:
if root.val > p.val and root.val > q.val:
root = root.left
elif root.val < p.val and root.val < q.val:
root = root.right
else:
return root
root = [6, 2, 8, 0, 4, 7, 9, None, None, 3, 5]
root = build(root)
p = root.left
q = root.right
print(root)
# ______6__
# / \
# 2__ 8
# / \ / \
# 0 4 7 9
# / \
# 3 5
print(lowestCommonAncestor(root, p, q))
# ______6__
# / \
# 2__ 8
# / \ / \
# 0 4 7 9
# / \
# 3 5
236. Lowest Common Ancestor of a Binary Tree¶
from typing import List, Optional
from binarytree import build
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
def lowestCommonAncestor(
root: "TreeNode", p: "TreeNode", q: "TreeNode"
) -> "TreeNode":
if not root or q == root or p == root:
return root
left = lowestCommonAncestor(root.left, p, q)
right = lowestCommonAncestor(root.right, p, q)
if left and right:
return root
return left or right
root = build([3, 5, 1, 6, 2, 0, 8, None, None, 7, 4])
print(root)
# ______3__
# / \
# 5__ 1
# / \ / \
# 6 2 0 8
# / \
# 7 4
p = root.left # 5
q = root.right # 1
print(lowestCommonAncestor(root, p, q)) # 3
# ______3__
# / \
# 5__ 1
# / \ / \
# 6 2 0 8
# / \
# 7 4
r = root.left.right.right # 4
print(lowestCommonAncestor(root, p, r)) # 5
# 5__
# / \
# 6 2
# / \
# 7 4
#include <iostream>
#include <unordered_map>
#include <vector>
using namespace std;
struct TreeNode {
int val;
TreeNode* left;
TreeNode* right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode* left, TreeNode* right)
: val(x), left(left), right(right) {}
};
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if (root == nullptr || root == p || root == q) {
return root;
}
TreeNode* left = lowestCommonAncestor(root->left, p, q);
TreeNode* right = lowestCommonAncestor(root->right, p, q);
if (left && right) {
return root;
}
return left ? left : right;
}
};
int main() { return 0; }